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Change in wave-form and mean flow associated with 
wavelength variations in rotating Couette flow. Part 1 

By H. A. SNYDER? 
Woods Hole Oceanographic Institution, Woods Hole, 

Massachusetts 02543 

(Received 24 January 1968 and in revised form 19 July 1968) 

When rotating Couette flow becomes unstable a periodic vortex structure is 
formed. For the wide-gap case, this flow is steady for a rather large range of the 
Taylor number above onset. In  the region of finite amplitude instability the 
wave-numbers of the periodic structure are not unique. It is shown empirically 
that the non-uniqueness is not an end effect but a bonafide property of the flow 
and that the wave-form is a unique function of the wavelength. Data is presented 
to demonstrate the interval over which the wave-numbers can be vaned when 
the parameters of the system are fixed. The large effect on the wave-form of 
small changes in the wavelength is also illustrated. These conclusions are based 
on extensive measurements of the azimuthal drift velocity for a particular mode 
of secondary flow. 

1. Introduction 
An interesting feature of non-linear mechanics is that a steady-state solution 

to the equations of motion may under certain circumstances be determined not 
only by the steady-state boundary conditions but also by the past history of the 
system. This occurs when there is a manifold of steady solutions for each point in 
parameter space and the selection from this set is determined by the initial 
conditions or past history of the boundary conditions. The problems of super- 
critical cellular flows fall into this category. 

A t  the present time general methods for picking out a particular solution to a 
non-linear problem from the allowed set are not known. But currently there is a 
great deal of activity aimed at solving this problem. Most of the work is theo- 
retical; the reader can find many details and references to current articles in, for 
example, Ekhaus (1965) and Segel (1966). Very little experimental work on the 
selection problem has appeared in the literature. The author has reviewed the 
available data and has presented some original measurements in a previous 
article, Snyder (1968a). Quite a bit remains to be learned about this subject 
before we can predict the behaviour of the simplest cases. The present research 
is devoted to establishing certain results that may be used as a guide in the very 
complex theoretical investigations. 

t On leave from Department of Physics, Brown University. 
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Of those problems which exhibit the non-uniqueness under discussion per- 
haps the easiest case to treat both theoretically and experimentally is that of 
rotating Couette flow. There is no loss of generality in choosing this flow over 
others since the non-linear term in the governing equation is the same for all the 
forms of cellular flow and it is thenon-linear term which accounts for the interest- 
ing effects. 

It is well known that in the supercritical region the flow between concentric 
rotating cylinders consists of cellular vortices. If the axis of rotation is vertical, 
the axes of the vortices lie in a horizontal plane. They are vortexrings stacked one 
upon another; adjacent cells have opposite sense of rotation. The flow is therefore 
periodic in the axial direction (singly periodic); a pair of vortices constitutes a 
wavelength. It is also possible for the wave-form to be periodic in the azimuthal 
direction in addition to its axial periodicity (doubly periodic). In  the latter case 
the wave-form, which is no longer rotationally symmetric, drifts relative to the 
containing cylinders and has an angular frequency in the laboratory frame which 
we will designate 6. Pictures of both singly and doubly periodic cells may be 
found in an article by Coles (1965). 

The non-uniqueness of rotating Couette flow is evident in the wavelength of 
the disturbance in the axial direction A, as well as in the aximuthal wave-number 
m, if the flow is doubly periodic. For a fixed geometry and dimensions of the 
apparatus, and for fixed rates of rotation of the cylinders, i.e. fixed boundary 
conditions, it is possible to have a range of different wavelengths in the axial 
direction and several different wave-numbers in the azimuthal direction. We 
will be interested in this paper in how the different properties of the wave-form 
are influenced by changes in the wavelength when the boundary conditions are 
held fixed. In  particular we will measure the drift velocity at fixed boundary 
conditions; this data will be used to show that rather small changes in the wave- 
length at  constant conditions cause the secondary flow to be strongly modified. 

The fact that the wavelength of the disturbance in Couette flow is not a 
unique function of the Taylor number, the clearance ratio, and the angular ve- 
locity ratio of the cylinders (the dimeiisionless governing parameters of the 
steady-state equation) was demonstrated in an important piece of research by 
Coles (1965). Let us designate: the Taylor number by T = (Q,d2/v)2,  where Q, 
is the angular velocity of the inner cylinder, d is the gap width and v is the kine- 
matic viscosity; Re, = (T)I;  the clearance ratio by 7 = R,/R,, where R, > R, are 
the radii of the cylinders; the angular velocity ratio by ,u = Q2/Ql; and the length 
to gap ratio by y = L / d ,  where L is the height of the fluid column. Coles, using 
an apparatus with 7 = 0.875 and y fixed at 27.9, has shown that with p = 0 and 
Re, somewhat above the onset value, the secondary wave-form is doubly periodic 
in the axial z, and in the azimuthal 8 directions, i.e. each variable has a dependence 
proportional to exp i (kz  + mf3 - ot), where k is the axial wave-number or 2n/h. It 
is obvious that m is an integer and that the number of half wavelengths in L is also 
an integer, call it N .  As Coles varied Re, he found that various modes character- 
ized by (2N,  m) occurred, and that the range for the different (2N,  m) overlapped. 
When the wave-form is non-unique the past history of the apparatus determines 
the values ( 2 8 ,  m) . 
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In an earlier experiment Hagerty (1946) used an apparatus in which the level 
of the fluid could be raised or lowered while the cylinders were rotating. He found 
that when L was changed while Re, was above its critical value, h the wavelength, 
could be decreased by draining or increased by adding fluid. The value of N 
stayed constant over a rather large range of L for fixed Re,. There was an overlap 
in the plot of N us. L for adjacent integers N .  In  Hagerty’s experiments the 
length to gap ratio y w 6 so that end effects were important in determining the 
wave-form. 

There has been speculation by several different workers in this field on Coles’ 
results concerning non-uniqueness, Segel (1966, p. 191), Davey, DiPrima & 
Stuart (1968, p. 19). It is suggested that the effect arises from the end conditions 
and that in a sufficiently long apparatus the effect would not appear. One of the 
motivations for the present paper is to test this hypothesis. The results we will 
present show that the lack of uniqueness is not an end effect. 

It also occurred to the author that the properties of the wave-form should be a 
function of the wavelength A, and that N is an irrelevant parameter. In the work 
on end effects it is shown that h .I. 2LIN because the cell of secondary flow at each 
end of the apparatus is not a Taylor cell; its length may deviate from that of the 
intervening Taylor vortices by as much as a factor of two. We will prove in what 
follows that when two different values of N give the same A, then, the wave- 
forms are identical. 

The third purpose of this research is to see how large the relative difference in 
the observable properties of the wave-form might be when the wavelength is 
varied by about 20 or 30 yo. There are several properties that can be measured: 
(a )  the torque on the inner cylinder, ( b )  the circulation and harmonic generation 
in the secondary flow, or (c )  the drift velocity, in the case of doubly periodic 
wave-forms. We have made measurements on all three observables but will 
report only the results of case ( c )  in this paper. 

The measurements of the drift velocity are reproducible to better than 1 yo 
from run to run and day to day; they are easy to take and interpret. Furthermore, 
the drift velocity results are sufficient to answer the purposes of the research as 
set forth above. At present, the data on cases (a)  and (b)  show relative changes 
with h having a maximum of about 30 yo with a scatter of & 10 %. We are 
presently trying to reduce the scatter in the data of cases (a )  and (b ) ,  and hope to 
present the results as part I1 of this paper shortly. 

2. Methods and equipment 
The method combines features of both Coles’s (1965) and Hagerty’s (1946) 

experiments. Adoubly periodic mode with m = 2 is chosen for study. L, the length 
of the fluid column, is varied as in Hagerty’s investigation and Re, is varied as 
Coles has done. The angular frequency of the wave-form (the drift velocity) 
w/m = 6, or more frequently w ,  is measured. The results form a three entry 
table for 6 or w in terms of Re,, Re, and A; these are the four variables that are 
measured. More details of the procedure will be presented later. 

22-2 
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2.1. Equipment 
The apparatus is described in previous publications: see Snyder & Karlsson ( 1964), 
Lambert, Snyder & Karlsson (1965) and Snyder (1968b) for most of the details. 
The value of 7 is selected to be + because other experiments have shown that the 
mode m = 2 has the largest area in parameter space for 7 M 4. For the present 
data R, = d = 3.140 cm. The maximum value of L is 95 cm. The base of the 
annular space between the cylinders rotates with the inner cylinder, and the 
upper surface of the fluid column is a free surface. Thermal baths inside the inner 
cylinder and outside the outer cylinder maintain the annular region isothermal to 
about k 0.005 "C. 

The path lines of the flow are made visible by aluminium flakes suspended in 
the aqueous solution of glycerol used as the working fluid. A plane through the 
axis of rotation about 2 mm in thickness is lighted with parallel light. The lighted 
plane is observed at normal incidence by a photocell. The output of the photocell 
has the period 2 7 ~ 1 ~ .  This signal is recorded and w can be read off the recorder 
trace. 

In  calculating Re, and Re, it is necessary to know LR,, LR, and u. The two vari- 
ables Q, and LR, are measured by magnetic pick-ups controlling electronic 
counters. The speed of the drive motors is constant to within the variations of the 
line frequency, or about i 0.2 yo. The speed can be measured to about the same 
accuracy. 

A Cannon-Fenske viscometer is used to find u at the beginning and end of each 
set of runs. An accuracy of 1 yo is generally claimed by the manufacturers for this 
instrument. A high viscoscity solution, usually about 1.0 cm2/sec, is used to 
reduce the transient equalization time of the wavelengths. Although this time 
for a singly periodic cell has been shown in a previous publication, Snyder 
(1968a), to be about L2/6u, the vertical motion of the doubly periodic cell reduces 
the time to about L2/25u or about 4 min in these experiments. 

The wavelength of the secondary flow is observed with a cathetometer focused 
on the lighted axial plane. At normal incidence the instrument is both sensitive 
and accurate to 0.1 mm. Since h z 5 cm, the measurements of the wavelength 
are good to better than 1 yo. 

2.2. Procedure 
Two different types of experiments were carried out. In  the first, Re, and Re, are 
held fixed. The apparatus is started in such a manner that the number of second- 
ary cells N has a desired value (see Snyder 1968a for the procedure for setting up 
a particular number of cells). The level of the fluid L is set at  a desired height. 
The system is allowed to run for the transient equalization time-about L2/25v, 
i.e. 4 min. Then, h the wavelength and w the angular frequency of the wave-form 
are measured. The level is increased or decreased to a new value and the process is 
repeated. 

The result is a curve of w us. h for fixed Re, and Re,. When L reaches a critical 
value, there is a transition to a new number of cells N & 1; this transition limits 
the extent of the curve. If Re, and Re, are not close to the edge of the region 
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where m = 2 in the Taylor number plane there are no transitions to a new value 
of m. It is important in taking the data that after each change of conditions, 
the system must run for the transient equalization time before a reading is 
made. 

The second type of data is a plot of wvs. Re, for fixed h and Re,. Again the 
apparatus is started in a way which will give a desired value of N ,  the number of 
cells. Then, h and w are measured. Re, is changed to a new value and fluid is 
added or subtracted to keep h constant; recall that the length of the cells at  the 
ends may be a function of Re,. After the necessary waiting time the new value of 
o is measured. This process continues until there is a transition to N 5 1 or to a 
new value of m. 

Because of hysteresis in the transitions N - t  N ? 1 and m+m', the precise 
path followed in parameter space when taking the data must be specified. 
Figure 1 illustrates where the various modes of secondary flow are found when 

I I I I  I 
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FIGURE 1. The wave-form diagram for an apparatus with R, = 2R,. T, Taylor vortices; 
S,  spirals; rn = 2, 3, 4, doubly periodic cells with aximuthal wave-number na. Hysteresis 
is indicated by dotted lines. 

7 = 4. Solid lines indicate that no hysteresis occurs in traversing the line in any 
direction. When there is hysteresis, the line is dotted and the arrow points in the 
direction of traverse which results in the line indicated. All lines show the maxi- 
mum extent of the region of more complicated wave-form for all attainable 
values of A. In  the figure, T means a simple Taylor vortex, S is a spiral, S + T is a 
mixture, and m indicates a doubly periodic wave-form with the appropriate 
value of m. Note that only singly periodic wave-forms occur to the right of 
Re, = - 15. We will be concerned only with the mode m = 2. All step by step 
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passes across this region will be at  constant Re,, i.e. a horizontal line in the figure, 
and from right to left, i.e. toward increasingly negative values of Re,. For fixed 
Re, and Re, the course is toward shallower depths, decreasing L. 

3. Results 
3.1. The wave-form 

The wave-form which occurs in the area of figure 1 designated as m = 2 is a 
complicated mixture of linear normal modes. The predominant mode has axial 
wave-number k and azimuthal wave-number m = 2 .  But there is a large amount 
of harmonic generation on the wave- rm.  

FIGURE 2. A quarter period of the wave-form whose largest component is r n  = 2 .  

Figure 2 contains four sketches of the streaklines and represents $ the cycle of 
the wave-form. It represents what one sees in the lighted plane as the wave-form 
drifts by. The sequence starts with streaklines that are symmetric about a 
strong out-going jet (from inner to outer cylinder). There is a weak return flow. 
The out-going jet swings down slightly as in (b) ,  and the lower cell of the pair 
enlarges at  the expense of the neighbouring upper cell. As the axis of the out-going 
jet turns down farther, as in ( c )  and (d), the lower cell continues to grow while the 
upper cell diminishes until it  is hardly visible. Then, the sequence reverses so that 
we have (d), ( c ) ,  (b ) ,  and finally a symmetric shape. Next, the outgoing jet turns 
upward and the sequence is the mirror image of figure 2. Coles (1965) has photo- 
graphed a wave-form that is qualitative similar; see his plates 2, 3 and 4. 

The relative change in the size of a cell as it progresses from the symmetrical 
state to the case shown in figure 2 ( d )  depends upon Re,. The lowest value at  
which the m = 2 mode appears is Re, = 145 (see figure 1). Near onset of the mode, 
the amplitude of oscillation of the cell size is very small; but when Re, z 160 
the wave-form looks like figure 2 for all attainable values of Re,. There is very 
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little change in the appearance of the streaklines as Re, and Re, are varied 
throughout the range of the mode, provided Re, > 160. 

It is notable that the components of harmonic generation in both the axial 
and azimuthal directions are in phase with the fundamental. We pointed out 
earlier (Snyder & Lambert 1966) that for simple Taylor cells, the components 
generated by harmonic generation on the axial periodicity have the same phase 
as the fundamental-this is the origin of the strong out-going jet. Here, the jet 
formation is evident, but even more striking is the effect of the harmonic content 
of the azimuthal mode. The wave-form viewed with front lighting (not as we 
described earlier but as Coles (1965) has used) so that an entire period of the 
secondary flow is visible, shows that the cell boundaries defined by the out-going 
jet as i t  impinges on the outer cylinder have a saw-tooth shape. Two other 
features of interest are: (a )  that during a period of oscillation the origin of the out- 
going jet, at  the inner cylinder, does not move by more than 2 or 3 %  of the 
amplitude of the downstream end, i.e. it is fixed in space, and (b)  that all pairs of 
cells throughout the length of the fluid column are in phase. 

The transition from mode m = 2 to the Taylor vortices (see figure 1) is simple; 
the amplitude of oscillation merely decreases until no &dependence is observable. 
We should note at  this point that an outer row of vortices, sometimes predicted 
to occur beyond the nodal radius a t  which the tangential velocity is zero, has not 
been observed either in the T or m = 2 regions. The change over from m = 2 to 
m > 2 or from N to N & 1 is preceded by a precurser of the transition; the pairs 
of cells lose their phase coherence. The column breaks up into several groups of 
cells which are coherent among themselves but differ in phase with other groups. 
There is a region of non-conformity between the groups. This phenomenon occurs 
in a band of width about 5 Reynolds numbers along the transition boundary. 

3.2.  The wavelength vs. length to gap ratio as a signijkant variable 
For cylinders of infinite length the onset of instability for a Newtonian fluid is 
completely specified by Re,, Re, and 7 the radius ratio. For real cylinders one 
would expect the parameter L / d  = y to enter. In  the finite amplitude region 
Coles (1965) finds that the number of cells N must also be treated as an inde- 
pendent variable. Some have questioned whether Coles’s results still hold if the 
length to gap ratio is made very large; see Segel’s (1966) review. As described 
above we investigated this problem by taking sets of data such as figure 3. 

The frequency of the wave-form observed in the laboratory frame f, i.e. 
f = w/2n,  is plottedin dimensionless form against the equivalent length measured 
in gap widths. Here, the equivalent length is the length of the fluid column minus 
the height of the boundary cells at  both ends of the column. The number associ- 
ated with each curve is the number of Taylor cell pairs, i.e. the number of wave- 
lengths of the disturbance, observed. The operating point for all the data on the 
curve has Re, = 250, Re, = -55. This point is located well away from the 
boundaries of the region m = 2 shown in figure 1. If the wavelength is calculated 
for successive curves with fixed values off d2 /v  the wavelength is always the same. 
For example, whenfd2/v = 0, the dimensionless wavelength h/d is 1.76 for all the 
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curves in the figure, and when df"v = 2, h / d  = 1-52 for each curve. Thus, there is 
a unique relation between hld and f d2/v;  Lid or y does not affect the results when 
there are more than 10 cells. However, when the value of the equivalent gap 
widths gets less than 10, then end effects are important and hld depends not only 
on ,u but also on y. 

Equivalent gap widths 
FIGURE 3. The dimensionless frequency of the wave form m = 2 vu8. the height of the fluid 
column L. The abscissa is L in units of gap width. The numbers on each curve denote the 
number of cells in the column. 

Figure 3 is only one example of a number of data sets that have been taken for 
various combinations (Re,, Re,). All the plots similar to figure 3 have the com- 
mon property that the curves for different N are nearly parallel, although the 
straightness of the lines, as in the example, is not a general characteristic. 
Another common feature of this data is that hld reaches a saturation value as it 
decreases; a transition to N + 1 or N + 2 occurs if an attempt is made to reduce 
hjd below this value. The scatter of the data on the curve marked ' 14' is indicative 
of a.11 the drift velocity measurements reported here. 

3.3. Drift velocity vs. wavelength 
The remaining curves are reduced from sets of data such as figure 4. The di- 
mensionless angular drift velocity is measured as a function of Re, and Re, for 
fixed values of hld .  The range of Re, which has been studied is from 160 to 350. 
The lower limit is set by the decrease of the amplitude of oscillation as Re, 
decreases; while at  the upper limit, the cells at  the ends of the apparatus become 
unstable and disturbances are propagated along the column of cells. The value 
of Re, is held constant while Re, is increased toward larger negative values. The 
standardvalues of Re, which are observed are indicated by numbers on the curves. 

From data such as that shown in figure 4, the figures 5 to 10 have been 
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FIGURE 4. The dimensionless angular velocity of the wave-form 218. the Reynolds number 
of the outer cylinder for fixed values of the Reynolds number of the inner cylinder. The 
wavelength is maintained at 1.63 times the gap width. 
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FIGURE 5. Contours in the Reynolds number plane of constant dimensionless drift velocity 
of the wave-form when the wavelength is maintained at  1.75 times the gap width. 
FIGERE 6. Contours in the Reynolds number plane of constant dimensionless drift velocity 
of the wave-form when the wavelength is maintained at 1-63 times the gap width. 
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FIGURE 7. Contours in the Reynolds number plane of constant dimensionless drift velocity 
of the wave-form when the wavelength is maintained at 1-53 times the gap width. 
FIGURE 8. Contours in the Reynolds number plane of constant dimensionless drift velocity 
of the wave-form when the wavelength is maintained at  1.42 times the gap width. 
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FIGURE 10 

FIGURE 9. Contours in the Reynolds number plane of constant dirqensionless drift velocity 
of the wave-form when the wavelength is maintained at  1.27 times the gap width. 
FIGURE 10. Contours in the Reynolds number plane of constant dimensionless drift velocity 
of the wave-form when the wavelength is maintained at  1-19 times the gap width. 
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FIGURE 11. Contours in the Reynolds number plane of zero drift velocity of the wave- 
form in the laboratory frame for different values of the wavelength. The numbers on the 
contours are the wavelength scaled by the gap width. 

FIGITRE 12. The dimensionless angular drift velocity of the wave-form m = 2 ws. the 
dimensionless wavelength for various values of the Reynolds number of the inner cylinder. 
The Reynolds number of the outer cylinder is fixed at -50 .  

FIGURE 13. The dimensionless angular drift velocity of the wave-form m = 2 v8. the di- 
mensionless wavelength for various values of the Reynolds number of the outer cylinder. 
The Reynolds number of the inner cylinder is fixed at 230. 
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constructed. This set of curves shows the extent of the mode m = 2 on the three 
dimensions Re,, Re, and h/d.  The contours are lines of constant dimensionless 
angular drift velocity ud2/v .  The most significant drift velocity is zero, no drift 
in the laboratory frame. Figure 11 shows the contours of zero drift velocity for 
various values of hld .  

Finally, it  is appropriate to show the angular drift velocity vs. the wavelength, 
first at  various values of Re, and fixed Re,, and then at  various Re, for fixed Re,. 
The fixed values of Re, and Re, are picked to be near the centre of the region 
m = 2 shown in figure 1; they are Re, = 230, Re, = - 50. The results are shown 
in figures 12 and 13. 

4. Discussion 
4.1. O n  the drift velocity and non-uniqueness 

Most of what we set out to demonstrate can be inferred from figure 3: end effects 
are not important in the problem of uniqueness if the length to gap ratio is greater 
than 10; this has been the case for all the data reported by Coles (1965). The 
correct complete set of parameters to specify the state of the system when the 
flow is supercritical is Re,, Re,, m, r] and Aid. Variation of hid with Re, and Re, 
held constant has a large effect on the secondary flow. By changing hid one pro- 
perty of the wave-form, the angular drift velocity, can be changed from 10 yo of 
the velocity of the inner cylinder, to zero in the laboratory frame, to 10 yo of the 
velocity of the outer cylinder, i.e. in the opposite direction to the mean flow. 
These variations in the wavelength may be made independently of Re, and Re,. 

The large variation in the wave-form at fixed Re, and Re, caused by changing 
hid is also evident in the set of figures 5 to 10. It is obvious when comparing these 
figures that no state diagram can be drawn in the two-dimensional Taylor number 
plane for disturbances which have finite amplitude. The transition curves above 
the critical curve are a strong function of hid .  Even for fixed Re,, Re, and h/d 
there is hysteresis in the transitions if the rate of changing the boundary con- 
ditions is not very slow compared to the rate of rotation. Figure 1 shows the 
maximum extent of the region m = 2 for attainable values of h/d. 

In  comparing the present data with the set of transitions tabulated by Coles 
(1965), it  must be borne in mind that the m type modes in an apparatus with 
r] = 0.875 (Coles’s value) is quite different from that shown in figure 2. The mix- 
ture of normal modes that make up a finite amplitude mode is a strong function 
of 7. Coles finds that for r] = 0.875 and p = 0 (for our data p + 0 )  all the modes 
regardless of m or h /d  have the same angular drift velocity, and its value is 
approximately QQ,. Notice the contrast between this result and figures 5 to 10. 
This difference in behaviour is due to a quite different mixture of normal modes 
in the two cases. 

The saturation of the hld curve at  about 1.2 as shown in figures 12 and 13 
indicates a large readjustment of the velocity field to prevent a decrease of hid.  
There is no similar strong reaction a t  the upper end of the range of hid. The same 
phenomenon is observed for the mode m = 0. (See Snyder (1968a) for data on the 
symmetric mode.) Form = 0 the curves of h/d vs. Re, at p = 0 are straight parallel 
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lines for most values of hld.  But near the lower end of the range, the slope suddenly 
gets steeper and the curve is no longer a straight line. 

4.2. On the mean flow 
Intuitively one would suspect that there is a simple relation between the mean 
motion and the azimuthal drift of the disturbance. In fact, it seems reasonable 
to expect the drift velocity to equal the mean azimuthal velocity. When the 
linear theory is applied to a wave-form which is a simple normal mode having 
m > 0, and if the unperturbed mean flow is V = Ar+B/r ,  this is actually the 
calculated result, Accordingly, it  appears promising to try to find an analytical 
expression relating the mean flow, the drift velocity and possibly some averaged 
functions of the disturbance velocities. 

Stuart (1958) has shown how the mean flow at finite amplitude can be calculated 
from the boundary conditions and from the mean values of velocity component 
functions associated with the secondary flow. His treatment is restricted to 
rotationally symmetric flows. An extension of the method to the doubly periodic 
case is straight forward. The velocity components in circular co-ordinates 
( r ,  8, z )  -+ (u, v, w) are now of the form 

W 

u = C [Unp(r, t )  exp {i(nkz+ qm8)) + U%(r, t )  exp {i( - nkx + qme)} 

+ Una(r, t )  exp { - i( - nkx + qme)} + U*(r, t )  exp { - i(nkz + qme)}, 
n ,  q = O  

(1) 

with similar expressions for v - V ,  w and the pressure p .  The functions Unq and 
U,, are complex conjugates, while U,, and U,, are complex conjugates only with 
respect to the subscript n. When these expressions are substituted into the 
Navier-Stokes and continuity equations an infinite sequence of nonlinear equa- 
tions results. There is a set of equations for each normal mode (n or 5, q or ij); the 
mean motion represents a special case with mode number (0, 0) .  

It is found that the set of equations associated with (0, 0) ,  i.e. the averaged 
value equations, are identical to Stuart’s mean motion equations. The added 
complexity of the asymmetric modes does not enter into the determination of 
the mean flow. Thus, we may write 

following Stuart, and note that 
W 

It does not appear that the equations, (2) and the related equation for the 
pressure, may be reformulated in terms of different averages so as to show 
explicit dependence on w. The mean equations do not give the desired relation- 
ship between w and V .  We also find that when the time dependence exp (iwt) and 
its complex conjugate are substituted into (2 ) ,  V is independent of time; the 
term a V/at may be omitted for periodic flows. 
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The equations generated by equating the coefficients of the higher normal 
modes all contain w and V explicitly. However, these equations are extremely 
difficult to solve. Only two special cases have been investigated, and in both 
cases the application of the results is limited to the narrow gap geometry. (See 
Krueger, Gross & DiPrima 1966, and Davey, DiPrima & Stuart 1968.) Extreme 
truncation of the series (1) has been used in both investigations and therefore the 
results are limited to small amounts of harmonic generation, i.e. small amplitudes. 
Even in these simplified examples there is no uncomplicated analytic relation 
between V and w .  

Another approach t o  the problem is: (a)  to start with Stuart’s (1958) solution 
of equation (2) with aV/at = 0; ( b )  to average the resulting V over the width of 
the gap obtaining 7; (c )  to assume a relation between w and 7; and (d )  to see 
if consistent values of the adjustable parameters may be chosen. For ‘q = Q we 
find 7 = Q1d(0*425 + 1.075,~) - 1-075Zd/v +Z*d/v, (4) 

We need (4) expressed in terms of Re, and Re,; therefore the dependence of 2 and 
Z* on the Reynolds numbers must be determined. Davey (1962) has analyzed the 
non-linear stability problem for 7 = Q when the wave-form is rotationally 
symmetric and p = 0; he also treated the case v+ 1 for p + 0. Following his 
method we note that to a first approximationu = A,u;Q,d/Re,and v = A,v;Q,d, 
where At = p(1-  Ref,,,it/Re:)f (p), and both u; and v; are independent of the 
Reynolds numbers but are functions of r, and p is a constant. Thus 

uv x (AiQ:d2/Rel)uivi, 

Zd/v = Qld.&Z0 and Z*d/v = Q2,dA,2Z$ , where 2, and Z$ are pure numbers. For 
the data in question Re: > 5 Re:, crit so that A: z pf (p). Since f (p) -+ 1 as p --f 0, we 
will write f (p) = 1 + C l p  + C,p2+. . ., and thus, to the accuracy of our approxi- 
mation 

Assuming the dimensionless drift velocity Rd = wd2/v  is approximately equal to 
vd/v we find that 

7/Qld x 0-43 +p +p(Z,* - 2,) (1 + C,p). ( 5 )  

(6) 
{Rd - 11 + ClP(Z$ - Z0)l Re,} 

[0.43 +p(Z,* - Zo)] 
Re, x 

is a first approximation to the data of figures 5 to 11. 
Note that by (6) the slope aRe,/aRe, is independent of Rd, Re, and Re,. The 

data shows nearly constant slope throughout most of the region. Variations in 
C, and (8: - 8,) can account for deviations from the average slope. The average 
value of aRe,/a Re, is observed to be very close to  - 10. The data also shows that 
aR,laRe, is roughly constant at  0.7. Combining these two results with (6) and 
Davey’s value of p (for = Q and p = 0) it appears that C, M 7.5 x lo-, and 
(2; - 8,) = 40. Both values are reasonable if we assume that the motion is not 
vastly different from the case p = 0 and the same value of Re,. Using Davey’s 



Change in wave-form and mean flow in rotating Couette flow 351 

u; and v; we find (Z: - 2,) w 20. The narrow gap study of Davey indicates that 
in that case, the results are not strongly dependent on ,u near p = 0, thus a small 
value for C,. 

Most of the results are consistent with this crude theory whose main premise is 
that the drift velocity is close to the mean azimuthal velocity throughout the gap. 
Equation (6) predicts that for Rd = 0, the case shown in figure 11, all curves with 
the same slope should coincide. It appears that we have to go to a higher order 
of approximation to account for the variation of o with A. We note, however, 
that except for the cases when h is near saturation, the different curves are quite 
close together and they get more so as ReJRe,, crit gets larger. 

We could use the slopes aReJaRe, and aRd/aRe, from the data to find C, and 
(Z,* - ZJ, and thence work back to the amplitude of circulation of the cells and 
to E5. But due to the restriction to u cc ui and v cc vi, i.e. no appreciable har- 
monic generation, the theory is not sufficiently precise to give reliable information 

In closing we wish to call attention to some other results on this problem which 
are of a technical nature. The drift velocity is very responsive to  changes in 
viscosity for constant Re,, Re, and A;  the instrument can be used as a viscometer. 
In  exploring the feasibility of using the apparatus for viscosity measurements we 
investigated the sensitivity of the apparatus to slight imperfections in : centring 
the shafts; out-of-roundness of the cylinders; tilt of the shafts; small thermal 
gradients; etc. The interested reader is referred to Snyder (1968~). 
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